Integration Identities for Some Iterated Exponentials of Order Three

نویسندگان

  • Robert A. Van Gorder
  • R. A. Van Gorder
چکیده

Inspired by the well-known elegant result for the integral of the power tower of length two x x , namely 1 0 1/x x dx = ∞ n=1 1/n n (first attributed to Johann Bernoulli, and commonly referred to as the " sophomore's dream " in present day literature [1]), we present a number of identities for power towers of length three. In the present communication, we shall be primarily concerned with inte-grals of the type I = 1 0 F (x)dx, where the integrand take the form F (x) = T (f (x); g(x); h(x)). Here, T (α; β; γ) = α β γ is a general power tower of length three and f , g and h are sufficiently well behaved functions. Making use of successive exponential transformations, one may write 1 0 (f (x)) a(g(x)) bh(x) dx = ∞ n=0 a n n! ∞ m=0 b n n m m! 1 0 (h(x)) m (ln g(x)) m (ln f (x)) n dx. Applying such a transformation, and making use of the known identity [3] 1 0 x p (ln x) q dx = (−1) q q! (p + 1) q+1 p > −1 , q = 0, 1, 2,. .. , (2) when a = −1, b = 1, f (x) = g(x) = x and h(x) = 1, we recover the identity of Bernoulli as given in the abstract. Similarly, taking a = b = 1, f (x) = g(x) = x and h(x) = 1, one obtains 1 0 x x dx = ∞ n=1 (−1) n+1 /n n. One may obtain even

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The method of iterated commutators for ordinary di erential equations on Lie groups

We construct numerical methods to integrate ordinary di erential equations that evolve on Lie groups. These schemes are based on exponentials and iterated commutators, they are explicit and their order analysis is relatively simple. Thus we can construct group-invariant integrators of arbitrarily high order. Among other applications we show that this approach can be used to obtain new symplecti...

متن کامل

University of Cambridge the Method of Iterated Commutators for Ordinary Diierential Equations on Lie Groups the Method of Iterated Commutators for Ordinary Diierential Equations on Lie Groups

We construct numerical methods to integrate ordinary diierential equations that evolve on Lie groups. These schemes are based on exponentials and iterated com-mutators, they are explicit and their order analysis is relatively simple. Thus we can construct group-invariant integrators of arbitrarily high order. Among other applications we show that this approach can be used to obtain new symplect...

متن کامل

Course MA2C02, Hilary Term 2011 Section 7: Trigonometric Identities, Complex Exponentials and Periodic Sequences

7 Trigonometric Identities, Complex Exponentials and Periodic Sequences 26 7.1 Basic Trigonometric Identities . . . . . . . . . . . . . . . . . . 26 7.2 Basic Trigonometric Integrals . . . . . . . . . . . . . . . . . . 28 7.3 Basic Properties of Complex Numbers . . . . . . . . . . . . . 29 7.4 Complex Numbers and Trigonometrical Identities . . . . . . . 31 7.5 The Exponential of a Complex Numbe...

متن کامل

Extensions by Antiderivatives, Exponentials of Integrals and by Iterated Logarithms

Let F be a characteristic zero differential field with an algebraically closed field of constants C, E ⊃ F be a no new constant extension by antiderivatives of F and let y1, · · · yn be antiderivatives of E. The antiderivatives y1, · · · , yn of E are called J-I-E antiderivatives if y′i ∈ E satisfies certain conditions. We will discuss a new proof for the KolchinOstrowski theorem and generalize...

متن کامل

Pfaffian and Hafnian Identities in Shuffle Algebras

Chen’s lemma on iterated integrals implies that certain identities involving multiple integrals, such as the de Bruijn and Wick formulas, amount to combinatorial identities for Pfaffians and hafnians in shuffle algebras. We provide direct algebraic proofs of such shuffle identities, and obtain various generalizations. We also discuss some Pfaffian identities due to Sundquist and Ishikawa-Wakaya...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010